RESEARCH INTERESTS: Cellular and molecular mechanisms of striated muscle physiopathology

1. PHARMACOLOGICAL, PHYSICAL, AND NUTRITIONAL INTERVENTIONS AGANIST CANCER CACHEXIA: My laboratory is focused on different approaches to counteract cancer cachexia, including pharmacological (exercise mimetics), physiological (physical activity), and nutritional (supplements) interventions in humans and animal models. 2. MYOFIBER MEMBRANE DAMAGE AND REPAIR: Duchenne Muscular Dystrophy (DMD), is a lethal genetic, muscle-wasting disease, characterized by progressive muscle fragility and weakness. The muscle membrane repair mechanism (MRM) is an active resealing pathway involving vesicle-sarcolem fusion to “patch” the compromised plasma membrane and represents a possible target to counteract muscle wasting in DMD, in which the chronic cycle of muscle degeneration-regeneration plays a pivotal role in disease progression. 3. PATENTS AND TECHNOLOGY TRASNFER: I am co-inventor of a patented procedure to produce Hsp60-enriched exosomes with exercise-mimetic activity, a product that is, therefore, called Physiactisome. Patent: Physiactisome – «Procedure for the synthesis of HSP-containing exosomes and their use against muscle atrophy and cachexia» - patent n. 102018000009235 on 8/10/2018, deposited by Università di Palermo. Owners: Università di Palermo, Università di Roma La Sapienza, Nanovector Torino, Sorbonne Université. List of inventors: Valentina Di Felice, Rosario Barone, Antonella Marino Gammazza, Campanella Claudia, Cappello Francesco, Farina Felicia, Eleonora Trovato, Daniela D’Amico, Filippo Macaluso, Dario Coletti, Sergio Adamo, Gabriele Multhoff, Paolo Gasco. International publication number WO 2020/075004 A1. This product can be exploited against muscle atrophy, since it ameliorates muscle endurance and homeostasis. The presentation of the product and the corresponding Spinoff project (iBioTHEx) was awarded the third prize at the EIT JumpStarter Grand final, Riga, Latvia, 15-17/11/2019, Health category. 4. PHYSIOPATHOLOGY OF MUSCLE TISSUES: I contribute to discovering and explaining those mechanisms underlying pathologies of the striated and smooth muscle tissues; this activity is carried out at Sorbonne University by using genetic murine models.

Cancer cachexia

Cancer cachexia
Compared to a control mouse (left) a tumor-bearing mouse (right) displays a dramatic muscle wasting. This loss of muscle mass is called cancer cachexia.

Exogenous gene expression in regenerating muscle

Exogenous gene expression in regenerating muscle
Depicted here is the over-expression of Green Fluorescent Protein (GFP, green; click on the image to access Tsien's Lab) in interstitial cells (circled), nascent myofibers (arrow) and adult fibers (arrowhead), in a regenerating Tibialis Anterior following focal injury. Laminin staining (red) highlights the basement membrane surrounding the skeletal muscle tissue, while nuclei are stained in blue. We do gene delivery by electroporation to study the regulation of muscle regeneration.

RESEARCH INTERESTS: Tissue engineering of skeletal muscle

Background and rationale.

Tissue engineering lies at the interface of regenerative medicine and developmental biology, and represent an innovative and multidisciplinary approach to build organs and tissues (Ingber and Levin, Development 2007). The skeletal muscle is a contractile tissue characterized by highly oriented bundles of giant syncytial cells (myofibers) and by mechanical resistance. Contractile, tissue-engineered skeletal muscle would be of significant benefit to patients with muscle deficits secondary to congenital anomalies, trauma, or surgery. Obvious limitations to this approach are the complexity of the musculature, composed of multiple tissues intimately intermingled and functionally interconnected, and the big dimensions of the majority of the muscles, which imply the involvement of an enormous amount of cells and rises problems of cell growth and survival (nutrition and oxygen delivery etc.). Two major approaches are followed to address these issues. Self-assembled skeletal muscle constructs are produced in vitro by delaminating sheets of cocultured myoblasts and fibroblasts, which results in contractile cylindrical “myooids.” Matrix-based approaches include placing cells into compacted lattices, seeding cells onto degradable polyglycolic acid sponges, seeding cells onto acellularized whole muscles, seeding cells into hydrogels, and seeding nonbiodegradable fiber sheets. Recently, decellularized matrix from cadaveric organs has been proven to be a good scaffold for cell repopulation to generate functional hearts in mice (Ott et al. Nature Medicine 2008).

I have obtained cultures of skeletal muscle cells on conductive surfaces, which is required to develop electronic device–muscle junctions for tissue engineering and medical applications1. I aim to exploit this system for either recording or stimulation of muscle cell biological activities, by exploiting the field effect transistor and capacitor potential of the conductive substratum-cell interface. Also, we are able to create patterned dispositions of molecules and cells on gold, which is important to mimic the highly oriented pattern myofibers show in vivo.

I have found that Static magnetic fields enhance skeletal muscle differentiation in vitro by improving myoblast alignment2. Static magnetic field (SMF) interacts with mammal skeletal muscle; however, SMF effects on skeletal muscle cells are poorly investigated. 80 +/- mT SMF generated by a custom-made magnet promotes myogenic cell differentiation and hypertrophy in vitro. Finally, we have transplanted acellular scaffolds to study the in vivo response to this biomaterial3, which we want to exploit for tissue culture and regenerative medicine of skeletal muscle.

The specific aims of my current research are:

1) to increase and optimize the production and alignment of myogenic cells and myotubes in vitro;

2) to manipulate the niche of muscle stem cells aimed at ameliorating their regenerative capacity in vivo;

3) to develop muscle-electrical devices interactions. We plan to exploit the cell culture system on conductive substrates for either recording or stimulation of muscle cell biological activities, by exploiting the field effect transistor and capacitor potential of the conductive substratum-cell interface.

4) to better clarify the biological effects of Static Magnetic Fields. With the aim to characterize the molecular mechanism underlying the effects of SMF on cell differentiation and alignment we are exposing molecules and cells to SMF below 1T.
5)
to produce pre-assembled, off-the-shelf skeletal muscle. We are seeding acellularized muscle scaffold with various cell types, with the goal to obtain functional muscle with vascular supply and nerves.


REFERENCES

1) Coletti D. et al., J Biomed Mat Res 2009; 91(2):370-377.


2) Coletti D. et al., Cytometry A. 2007;71(10):846-56.


3) Perniconi B. et al. Biomaterials, 2011 in press

Cultures of myotubes on a conductive surface in a parallel orientation.

Cultures of myotubes on a conductive surface in a parallel orientation.
C2C12 cells cultured on gold, by mean of adhesion to 100 nm-wide stripes coated with anti Stem Cell antigen1 (Sca1) Ab. Nuclei (blue) and actin cytoskeleton (red) staining highlights the selective cells adhesion on the Ab-coated stripes and the formation of parallel multinucleated syncytia (myotubes).

9/09/2014

Inflammation in Muscle Repair, Aging, and Myopathies

I have recently had the honor to co-edit a special issue of BioMed Research International dedicated to the role of inflammation in various acute and chronic conditions of muscle loss and disease. Our group in Rome participated to the special issue with a paper (from which the figure is extracted) confirming in vivo a role for the neurohypophyseal hormone vasopressin in muscle repair and homeostasis. The paper by Alessandra Costa et al., entitled "Local Overexpression of V1a-Vasopressin Receptor Enhances Regeneration in Tumor Necrosis Factor-Induced Muscle Atrophy" can be found by fillowing the link.
Figure legend. V1aR overexpression counteracts TNF-dependent protein degradation by stimulating the Akt pathway. (a) Western blots of phosphorylated Akt and native and phosphorylated FoxO3a expression demonstrate that in muscle overexpressing TNF, phospho-Akt and phospho-FoxO3a are downregulated, while the native Foxo3a is increased. In V1aR overexpressing muscles, the expression levels of phospho-FoxO3a and phospho-Akt is increased compared with TNF alone, while the native Foxo3a is reduced. (b–d) Densitometric analysis of three independent experiments of phospho-Akt, phospho-FoxO3a, and native FoxO3a expression levels. (e) Real-time PCR analysis revealed that the strong upregulation of atrogin-1 expression observed in the sample overexpressing TNF alone is downregulated in V1aR+TNF-transfected muscles. ; by Student’s -test.
Here is the Table of content of the special issue, a nice mix of original research and review articles. Inflammation in Muscle Repair, Aging, and Myopathies Guest Editors: Marina Bouché, Pura Muñoz-Cánoves, Fabio Rossi, and Dario Coletti Inflammation in Muscle Repair, Aging, and Myopathies, Marina Bouché, Pura Muñoz-Cánoves, Fabio Rossi, and Dario Coletti Volume 2014 (2014), Article ID 821950, 3 pages Stem Cell Transplantation for Muscular Dystrophy: The Challenge of Immune Response, Sara Martina Maffioletti, Maddalena Noviello, Karen English, and Francesco Saverio Tedesco Volume 2014 (2014), Article ID 964010, 12 pages From Innate to Adaptive Immune Response in Muscular Dystrophies and Skeletal Muscle Regeneration: The Role of Lymphocytes, Luca Madaro and Marina Bouché Volume 2014 (2014), Article ID 438675, 12 pages Cardioprotective Effects of Osteopontin-1 during Development of Murine Ischemic Cardiomyopathy, Georg D. Duerr, Bettina Mesenholl, Jan C. Heinemann, Martin Zoerlein, Peter Huebener, Prisca Schneider, Andreas Feisst, Alexander Ghanem, Klaus Tiemann, Daniela Dewald, Armin Welz, and Oliver Dewald Volume 2014 (2014), Article ID 124063, 15 pages IL-6 Impairs Myogenic Differentiation by Downmodulation of p90RSK/eEF2 and mTOR/p70S6K Axes, without Affecting AKT Activity, Michele Pelosi, Manuela De Rossi, Laura Barberi, and Antonio Musarò Volume 2014 (2014), Article ID 206026, 12 pages Local Overexpression of V1a-Vasopressin Receptor Enhances Regeneration in Tumor Necrosis Factor-Induced Muscle Atrophy, Alessandra Costa, Angelica Toschi, Ivana Murfuni, Laura Pelosi, Gigliola Sica, Sergio Adamo, and Bianca Maria Scicchitano Volume 2014 (2014), Article ID 235426, 14 pages Influence of Immune Responses in Gene/Stem Cell Therapies for Muscular Dystrophies, Andrea Farini, Clementina Sitzia, Silvia Erratico, Mirella Meregalli, and Yvan Torrente Volume 2014 (2014), Article ID 818107, 16 pages Vitamin D Receptor Agonists: Suitable Candidates as Novel Therapeutic Options in Autoimmune Inflammatory Myopathy, Clara Crescioli Volume 2014 (2014), Article ID 949730, 10 pages 7-Tesla Magnetic Resonance Imaging Precisely and Noninvasively Reflects Inflammation and Remodeling of the Skeletal Muscle in a Mouse Model of Antisynthetase Syndrome, Clara Sciorati, Antonio Esposito, Lara Campana, Tamara Canu, Antonella Monno, Anna Palmisano, Francesco De Cobelli, Alessandro Del Maschio, Dana P. Ascheman, Angelo A. Manfredi, and Patrizia Rovere-Querini Volume 2014 (2014), Article ID 879703, 8 pages Understanding the Process of Fibrosis in Duchenne Muscular Dystrophy, Yacine Kharraz, Joana Guerra, Patrizia Pessina, Antonio L. Serrano, and Pura Muñoz-Cánoves Volume 2014 (2014), Article ID 965631, 11 pages Inflammation Based Regulation of Cancer Cachexia, Jill K. Onesti and Denis C. Guttridge Volume 2014 (2014), Article ID 168407, 7 pages Macrophage Plasticity in Skeletal Muscle Repair, Elena Rigamonti, Paola Zordan, Clara Sciorati, Patrizia Rovere-Querini, and Silvia Brunelli Volume 2014 (2014), Article ID 560629, 9 pages

Our editorial "Inflammation in Muscle Repair, Aging, and Myopathies" briefly summarizes the main focus of this special issue, i.e. bringing together studies that used different experimental approaches in vivo or in vitro to dissect the dynamic changes taking place in specific immune cell populations, their cross talk with other cell types within the muscle milieu, and their contribution to normal versus pathological muscle repair. While the number of scientific publications on the topic of skeletal muscle inflammation has steadily grown over the last two decades, the notion of inflammation as a common feature in muscle degeneration occurring in aging and myopathies and its association with altered muscle has to our knowledge never previously been addressed and discussed in dedicated journal issues before.

No comments:

Post a Comment

THE NETWORK OF OUR COLLABORATORS 2017

THE NETWORK OF OUR COLLABORATORS 2017
We collaborate with the Myology Group and the Cochin Hospital in Paris for stem cell studies and SRF, with the Cancer Centre at Ohio State University, Columbus for studies on the mechanisms underlying cachexia, with the Neurorehabilitation Unit at University of Pisa for clinical studies, with Pharmacology and Bioinformatics at the University of Urbino for advanced statistical analyses, with the Anatomy Section at the University of Perugia and with GYN/OB at the University of Western Piedmont for studies related to circulating factors and myogenic cell responses in cachexia, with the Biotech-Med Unit at ENEA, Chemistry in Rome and Anatomy in palermo for tissue engineering applications. Functional studies are carried out in our Departement in Rome in collaboration with Musaro's laboratory.