RESEARCH INTERESTS: Cellular and molecular mechanisms of striated muscle physiopathology
Cancer cachexia
RESEARCH INTERESTS: Tissue engineering of skeletal muscle
Background and rationale.
Tissue engineering lies at the interface of regenerative medicine and developmental biology, and represent an innovative and multidisciplinary approach to build organs and tissues (Ingber and Levin, Development 2007). The skeletal muscle is a contractile tissue characterized by highly oriented bundles of giant syncytial cells (myofibers) and by mechanical resistance. Contractile, tissue-engineered skeletal muscle would be of significant benefit to patients with muscle deficits secondary to congenital anomalies, trauma, or surgery. Obvious limitations to this approach are the complexity of the musculature, composed of multiple tissues intimately intermingled and functionally interconnected, and the big dimensions of the majority of the muscles, which imply the involvement of an enormous amount of cells and rises problems of cell growth and survival (nutrition and oxygen delivery etc.). Two major approaches are followed to address these issues. Self-assembled skeletal muscle constructs are produced in vitro by delaminating sheets of cocultured myoblasts and fibroblasts, which results in contractile cylindrical “myooids.” Matrix-based approaches include placing cells into compacted lattices, seeding cells onto degradable polyglycolic acid sponges, seeding cells onto acellularized whole muscles, seeding cells into hydrogels, and seeding nonbiodegradable fiber sheets. Recently, decellularized matrix from cadaveric organs has been proven to be a good scaffold for cell repopulation to generate functional hearts in mice (Ott et al. Nature Medicine 2008).
I have obtained cultures of skeletal muscle cells on conductive surfaces, which is required to develop electronic device–muscle junctions for tissue engineering and medical applications1. I aim to exploit this system for either recording or stimulation of muscle cell biological activities, by exploiting the field effect transistor and capacitor potential of the conductive substratum-cell interface. Also, we are able to create patterned dispositions of molecules and cells on gold, which is important to mimic the highly oriented pattern myofibers show in vivo.
I have found that Static magnetic fields enhance skeletal muscle differentiation in vitro by improving myoblast alignment2. Static magnetic field (SMF) interacts with mammal skeletal muscle; however, SMF effects on skeletal muscle cells are poorly investigated. 80 +/- mT SMF generated by a custom-made magnet promotes myogenic cell differentiation and hypertrophy in vitro. Finally, we have transplanted acellular scaffolds to study the in vivo response to this biomaterial3, which we want to exploit for tissue culture and regenerative medicine of skeletal muscle.
The specific aims of my current research are:
1) to increase and optimize the production and alignment of myogenic cells and myotubes in vitro;
2) to manipulate the niche of muscle stem cells aimed at ameliorating their regenerative capacity in vivo;
3) to develop muscle-electrical devices interactions. We plan to exploit the cell culture system on conductive substrates for either recording or stimulation of muscle cell biological activities, by exploiting the field effect transistor and capacitor potential of the conductive substratum-cell interface.
5) to produce pre-assembled, off-the-shelf skeletal muscle. We are seeding acellularized muscle scaffold with various cell types, with the goal to obtain functional muscle with vascular supply and nerves.
REFERENCES
1) Coletti D. et al., J Biomed Mat Res 2009; 91(2):370-377.
2) Coletti D. et al., Cytometry A. 2007;71(10):846-56.
3) Perniconi B. et al. Biomaterials, 2011 in press
Cultures of myotubes on a conductive surface in a parallel orientation.
12/21/2011
postdoctoral fellow position available (SOLD OUT!)
EXPERIMENTAL MODELS AVAILABLE IN THE LAB (2011)
LAB METHODS: Assessing cell number with a counting chamber
12/16/2011
LAB METHODS: Cardiac Stem Cell Isolation
Blind tasting session at the lab
12/07/2011
ARTICLES: Teodori et al. Chimica e Industria 2011
10/27/2011
CLASSES, LECTURES ETC: REGENERATIVE MEDICINE
Linked here you can find a presentation dealing with regenerative medicine (in French/ oui, en Français!) for the master students in "Molecules and therapeutic targets". The presentation consists of three parts: 1) stem cells and their therapeutic use 2) what is tissue engineering 3) strategies of the regenerative medicine: in situ regeneration, stem cell transplantation, transplantation of pre-assembled organs. A similar lesson, more focused on tissue engineering (Englligh version) is visible here. Learning about the outstanding capacity of regeneration shown by the newt will allow the full regeneration of human organs? Hopefully better than what we are currently doing.
10/05/2011
IS THIS BLOG GOING TO BE SHOT DOWN?
7/22/2011
ARTICLES: Perniconi et al. Biomaterials 2011
7/16/2011
LAB METHODS: transplantation of an acellular scaffold to replace the corresponding muscle
We are about to publish a paper where we characterize the in vivo response to a graft composed by an acellular scaffold obtained by a previously decellularized skeletal muscle. The grafting procedure is now available as a ppt - link embedded in the title of this post. The corresponding video on how to replace a TA with the corresponding acellular scaffold(iPod version) is available through the link in parentheses. For an alternative format, try to click here (avi version). The video is supplemented as Additional materilas to the Biomaterials article.
LAB METHODS: Toluidine blue staining
There is no staining method as fast and informative (two for the price of one!) as the Toluidine blue staining. We use it while cryosectioning or while doing semithin sections to monitor sample quality and orientation. Toluidine specifically stains some cell and ECM features. Linked to the title of this post, you'll find our method for Toluidine staining, with references and additional examples. Fig. legend: Toluidine-stained skeletal muscle cryosections.
Research fundings: an update...
Well...I was too pessimistic. The fundings for the Fiscal Year 2009 ("PRIN 2009") has been released by the Italian Ministry of University and Research , with a delay of only three years and not four years, as I was foreseeing.
That's good news, worth at least a bottle of Prosecco di Valdobbiadene Giustino B. by Ruggeri!
That is also a good chance to have a look at what the USA are doing. Linked to the title is the analysis of the current presidential plan for R&D in that country. President Obama requested $ 147,696 bilion for research in the current Fiscal Year. With this rate they will DOUBLE the fundings in 11 years. Linked to the title, please find the full text of the analysis of this plan.
Left:
Research & Develoment funding path in the USA
Source:
Federal Research end Development Funding - FY 2011
JF Sargent jr., coordinator, specialist in Science and Technology Policy
June 10, 2011
6/20/2011
Blind tasting session at the lab
To celebrate a few recent events (the UPMC Emergence 2011 grant, the Mol Endocrinol paper) and to welcome a new student in the lab, we have tasted five Bordeaux 2006 wines, from different appellations characterized by marked nuances of their terroirs and specific grape assembly. Given that the different wineyards are only about 50 Km from each other, the differences were outstanding.
Results of the blind tasting (panel : laboratory members):
1st Château-Haut Maurac, Médoc Cru Bourgeois (60 % Cabernet sauvignon, 40 % Merlot)
2nd Château Musset Chevalier , Saint Emillon Grand cru (50 % Merlot noir / 45 % Cabernet-Franc / 5 % Cabernet-Sauvignon )
3rd Les Hauts du Tertre, Margaux (55 % Cabernet sauvignon, 20 % Merlot, 20 % Cabernet franc, 5 % Petit verdot)
4th Château Prieuré-les-Tours, Graves.
We liked the winner for its intense bouquet of red fruits and its full body, with mature tannins and a long lasting aftertaste. One more cru Borgeois showing the great quality/price ratio of this category. From the color to the marked tannins it expressed the Medoc pretty well. However, I preferred the Margaux of Les Hauts de Tertre, a second wine produced by Château du Tertre, for its elegance and its more floreal bouquet. Margaux came out in the good balance between tannins, acidity and alcoolic warmth. The superb roundness of the Libournais St Emillon and the acidity of the Graves (Alas! - in such a poor interpretation) came out as well, but nobody guessed the crus for all the wines.
ARTICLES: Toschi et al. Mol Endocrinol 2011
In this paper, entitled "SKELETAL MUSCLE REGENERATION IN MICE IS STIMULATED BY LOCAL OVEREXPRESSION OF
V1a-VASOPRESSIN RECEPTOR", we identify skeletal muscle as a physiological target of hormones of the vasopressin (AVP) family and show a novel in vivo role for vasopressin-dependent pathways. FIG LEGEND In red Myc (i.e. overexpressed V1a-R) immunolocalization in skeletal muscle fibers highlighted by laminin staining in green.
In the last 10 years, we have characterized in detail AVP signaling pathways in myogenic cells in vitro. Also, we have reported that the muscle specific, V1a, AVP-receptor is modulated during myogenic differentiation in vivo, which suggest a role in muscle development. Consistently, we have shown that AVP intramuscular injection enhances muscle regeneration, a process which recapitulates muscle development in the adult.
With the last paper by Toschi et al. we formally demonstrate the biological role of AVP on skeletal muscle homeostasis and we pinpoint some molecular mechanisms underlying this effect, including calcineurin-mediated IL-4 production in the musculature in response to AVP.
FIG LEGEND role of Calcineurin-dependent effects of V1a-R overexpression on muscle regeneration. Further links to the press which cited the article: ANSA and Corriere della Sera
Against cuts in cultural funding
Cuts on culture and arts.
We have recently celebrated the 150th anniversary of Italian unification. As reported by the New York Times, a very intense moment occurred when Riccardo Muti conducted the "Va pensiero" at the premiere of Verdi's “Nabucco” at the Teatro dell’Opera in Rome in March, in the presence of the Prime Minister and the Mayor of the capital.
The issue was the heavy cut plan on cultural founding performed by the current government. The event had its climax at Muti's brief statements against this plan while introducing an exceptional bis of the "Va pensiero". Linked to the title of this post there is the touching video on youtube.
Cuts and management of university funding.
University budget cuts represent the other branch of the current harmful intervention on state budget, in a country which spending on university is already very low as compared to most other countries, as reported by the BBC last year. However, it is not only a matter of budget. What is even worse is the total incertitude for the CURRENT available fundings: in 2011 we are still waiting for the results of a major funding call of the Italian Ministry for the University and Research (MIUR) which is called PRIN 2009 and was released in 2010! In 2012, if and when some groups will receive the grants to which they applied three years before, what will remain to be accomplished of the proposed research projects? Won't the latter be born already aged and out to date?
A lucid analysis on the inceritude which reigns on italian university has been published a few months ago on the web pages of lavoce.info (in Italian).
4/29/2011
CLASSES, LECTURES ETC: Mechanisms controlling skeletal muscle homeostasis
OVERVIEW:
SKELETAL MUSCLE HOMEOSTASIS, HYPERTROPHY AND ATROPHY
The skeletal muscle tissue accounts for the majority of our body mass, nonetheless, the amount of skeletal muscle can vary significantly throughout life. There are specific mechanisms finely tuning the exact amount of muscle that we have at a given time.These are apparent in conditions far from homeostasis, i.e. when we have an excessive growth (hypertrophy) or reduction (atrophy) of muscle fibers. Throughout the presentation, I also try to state the case that not only muscle protein metabolism is important for controlling muscle homeostasis but also muscle stem cells support a "flow" of myogenic cells contributing to the maintenance of muscle fibers.
EXPERIMENTAL MODELS FOR STUDYING SKELETAL MUSCLE HOMEOSTASIS
Where I presents different approaches to study the regulation of muscle differentiation, growth and repair in vitro and in vivo.
MUSCLE ATROPHY, WASTING, CACHEXIA
Where I present different forms of muscle fiber atrophy and present in detail the features of the most severe form of muscle wasting, the syndrome of cachexia.
ENDURANCE EXERCISE & PROTEIN METABOLISM
Where I present some experimental data on exercise effects on muscle metabolism and homeostasis in physiological and pathological conditions.
MUSCLE REGENERATION IN PATHOLOGICAL CONDITIONS
Where I presents mechanisms whereby skeletal muscle regeneration is affected in cachexia, ultimately providing the molecular explanation for an important deficit in muscle regenerative capacity accounting for loss of muscle mass.
SUGGESTED READINGS
Glass D. 2003 Molecular mechanisms modulating muscle mass
Moseri V. 2010 Myogenin and calss II HDACs control neurogenic muscle atrophy by inducing E3 ubiquitin ligases
Musaro` A. 2004 Stem cell mediated muscle regeneration is enhanced by local isoform of Insulin-like Growth Factor 1
Zhou X. 2010 Reversal of cancer cachexia and muscle wasting by ActRIIB antagonism leads to prolonged survival
2/15/2011
The Real Face of Death
A creative, funny interpretation of a real TEM image representing an eucariotic cell in culture undergoing apoptosis (programmed cell death). Apoptosis major features are represented in this photomicrograph: loss of cell attachment, but maintenance of cell integrity, cell shrinkage, nuclear fragmentation and chromatin condensation.