RESEARCH INTERESTS: Cellular and molecular mechanisms of striated muscle physiopathology
Cancer cachexia
RESEARCH INTERESTS: Tissue engineering of skeletal muscle
Background and rationale.
Tissue engineering lies at the interface of regenerative medicine and developmental biology, and represent an innovative and multidisciplinary approach to build organs and tissues (Ingber and Levin, Development 2007). The skeletal muscle is a contractile tissue characterized by highly oriented bundles of giant syncytial cells (myofibers) and by mechanical resistance. Contractile, tissue-engineered skeletal muscle would be of significant benefit to patients with muscle deficits secondary to congenital anomalies, trauma, or surgery. Obvious limitations to this approach are the complexity of the musculature, composed of multiple tissues intimately intermingled and functionally interconnected, and the big dimensions of the majority of the muscles, which imply the involvement of an enormous amount of cells and rises problems of cell growth and survival (nutrition and oxygen delivery etc.). Two major approaches are followed to address these issues. Self-assembled skeletal muscle constructs are produced in vitro by delaminating sheets of cocultured myoblasts and fibroblasts, which results in contractile cylindrical “myooids.” Matrix-based approaches include placing cells into compacted lattices, seeding cells onto degradable polyglycolic acid sponges, seeding cells onto acellularized whole muscles, seeding cells into hydrogels, and seeding nonbiodegradable fiber sheets. Recently, decellularized matrix from cadaveric organs has been proven to be a good scaffold for cell repopulation to generate functional hearts in mice (Ott et al. Nature Medicine 2008).
I have obtained cultures of skeletal muscle cells on conductive surfaces, which is required to develop electronic device–muscle junctions for tissue engineering and medical applications1. I aim to exploit this system for either recording or stimulation of muscle cell biological activities, by exploiting the field effect transistor and capacitor potential of the conductive substratum-cell interface. Also, we are able to create patterned dispositions of molecules and cells on gold, which is important to mimic the highly oriented pattern myofibers show in vivo.
I have found that Static magnetic fields enhance skeletal muscle differentiation in vitro by improving myoblast alignment2. Static magnetic field (SMF) interacts with mammal skeletal muscle; however, SMF effects on skeletal muscle cells are poorly investigated. 80 +/- mT SMF generated by a custom-made magnet promotes myogenic cell differentiation and hypertrophy in vitro. Finally, we have transplanted acellular scaffolds to study the in vivo response to this biomaterial3, which we want to exploit for tissue culture and regenerative medicine of skeletal muscle.
The specific aims of my current research are:
1) to increase and optimize the production and alignment of myogenic cells and myotubes in vitro;
2) to manipulate the niche of muscle stem cells aimed at ameliorating their regenerative capacity in vivo;
3) to develop muscle-electrical devices interactions. We plan to exploit the cell culture system on conductive substrates for either recording or stimulation of muscle cell biological activities, by exploiting the field effect transistor and capacitor potential of the conductive substratum-cell interface.
5) to produce pre-assembled, off-the-shelf skeletal muscle. We are seeding acellularized muscle scaffold with various cell types, with the goal to obtain functional muscle with vascular supply and nerves.
REFERENCES
1) Coletti D. et al., J Biomed Mat Res 2009; 91(2):370-377.
2) Coletti D. et al., Cytometry A. 2007;71(10):846-56.
3) Perniconi B. et al. Biomaterials, 2011 in press
Cultures of myotubes on a conductive surface in a parallel orientation.
5/26/2010
Cachexia, sarcopenia, inactivity: the three Fates (Moirae) of muscle atrophy
from:
Am J Clin Nutr. 2010 Apr;91(4):1123S-1127S. Epub 2010 Feb 17.
Skeletal muscle loss: cachexia, sarcopenia, and inactivity.
by Evans WJ.
Division of Geriatrics, Department of Medicine, Duke University Medical Center, Durham, NC 27709, USA. william.j.evans@gsk.com
5/25/2010
LAB METHODS: CMFDA cell tracker
The protocol linked here is a method to label live cells and assess whether they are VITAL and/or STRESSED. The dye in fact accumulates inside the cells due to a chemical modification that makes it non-cell permeant. This esterase reaction requires glutathione. Therefore a shift toward low fluorescence characterizes a cell population with depleted levels of glutathione, i.e. that have been subjected to oxidative stress - GSH being the principal buffer of the redox state.
5/24/2010
caveat for the use of the Molecular Probes anti-Mouse Alexa Fluor 350 Ab
Looking at something in blue is cool but rather blues!
Il caso e la necessità, Le hasard et la nécessité, Chance and Necessity
"Tout ce qui existe dans l'univers est le fruit du hasard et de la nècessité"
"Everything in the universe is the fruit of chance and necessity"
Democritus, circa 460-370 BC
IN: Jacques Monod, Le Hasard et al nécessité: Assai sur la phyolosophie naturelle.
Léon-Alexandre Delhomme (1841-1895)
Description
Democritus che medita sull'anima, bronzo, 1868.
Démocrite méditant sur le siège de l'âme, bronze, 1868.
Democritus meditating on the seat of the soul, bronze, 1868.
5/19/2010
CLASSES, LECTURES ETC: Regenerative Medicine & Tissue Engineering
Figure legend: confocal image of a 20 micron tick cryosection of a murine acellular skeletal muscle matrix (laminin staining, red)